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ABSTRACT

We propose a fast video object segmentation method that
detects object boundaries accurately, and does not require
any user assistance. Video streams are considered as 3D
data, called video-cubes, to take advantage of 3D signal
processing techniques. After a video sequence is filtered,
marker nodes are selected from the color gradient. A vol-
ume around each marker is grown by using color/texture
distance criteria. Then volumes that have similar character-
istics are merged. Self-descriptors for each volume, mutual-
descriptors for each pair of volumes are computed. These
descriptors capture motion and spatial information of vol-
umes. In the clustering stage, volumes are classified into
objects in a fine-to-coarse hierarchy. While applying and re-
laxing descriptor based adaptive, similarity scores are esti-
mated for each possible pair-wise combination of volumes.
The pair that gives the maximum score is clustered itera-
tively. Finally, an object-based multi-resolution representa-
tion tree is assembled.

1. INTRODUCTION

Unsupervised object segmentation techniques can be cate-
gorized into three classes: region based methods using a
homogeneous color criterion [1], object based approaches
utilizing homogeneous motion criteria [2], and object track-
ing [4]. Although color oriented techniques work well in
some situations where the input data set is relatively simple,
clean, and fits the model well, they lack generality and ro-
bustness. The main problem arises from the fact that a video
object can contain totally different colors. On the other
hand, works in the motion oriented segmentation domain
start with an assumption that a semantic video object has
homogeneous motion. These motion segmentation works
can be simply separated into two broad classes: bound-
ary placement schemes and region extraction schemes [3].
Most of the motion-based methods are based on rough op-
tical flow estimation or unreliable spatiotemporal segmen-
tation. Hence, they suffer from the inaccuracy of motion
boundaries. The last class of methods is object-tracking.

However, the tracking algorithms need user interface, and
the performance of the tracking algorithms highly depends
on the initial segmentation. Most object extraction algo-
rithms treat object segmentation as an inter-or-intra frame
processing problem with some additional parametric mo-
tion model assumptions or smoothing constraints, and dis-
regard 3D aspect of the video data. To develop an algorithm
that blends motion and color, we treat video sequences as
3D volumetric data, generate 3D color consistent initial seg-
ments, and merge the initial segments by using their trajec-
tory information. This enables us to propagate segmenta-
tion information both forward and backward in time. Be-
cause no separate motion estimation is involved, segmenta-
tion is fast. Moreover, it does not depend on either the ini-
tial region segmentation, homogeneous motion constraints,
or inaccuracy of motion boundaries as it happens in the
motion-oriented methods. Object boundaries are precisely
found. Unlike statistical approaches, the number of objects
does not have to be specified before segmentation, no user-
interface is needed.

In the next section, the video-cube concept is introduced.
Section III describes the stages of filtering, marker selec-
tion, volume growing, merging, and clustering volumes into
objects. The experimental results and discussion are in-
cluded in the last section.

2. VIDEO-CUBE

Arrangement of image frames along the time axis as shown
in Fig. 1 converts the input video sequence into 3D volume
of data. A video-cubeV (p) is formed by assigning a feature
vector!(p) that consists color values!Y , !V , !U and also
processed scores, i.e. edges, texture, frame difference, etc.,
to each elementp(x; y; t) of 3D dataV by indexing video
between two scene cuts. To accelerate segmentation, we
used the color components. In case of moderate object mo-
tion, an object has continuous color silhouettes in time axis.
Thus, a 3D volume growing method by using color features
can identify the smallest color consistent parts of the video
sequence. These parts, called as volumes, are then grouped
using trajectory information to determine the objects. For



Fig. 1. Video-Cube indexing.

a streaming video, the video-cube can be generated for a
certain number of frames permitting overlaps to ensure the
object number consistency within.

3. OBJECT SEGMENTATION

The flow diagram of the algorithm is given in Fig. 2. We
usedY UV color features because it performs in accordance
with human reception and more importantly, inter-color dis-
tances can be computed using theL2-norm. The input se-
quence is first3� 3 median filtered to remove out intensity
singularities without disturbing the edge formation.

3.1. Marker selection

After the video-cube is filtered, initial volumes are obtained
by enlarging portions of video-cube such that the color dis-
tribution is uniform within. Such portions are expanded
from seed points, called markers. LetS be the set of all
possible spatiotemporal points, i.e., all the points ofV . The
gradient magnitude is computed from the color channels,
and the minimum gradient magnitude point is chosen as a
markermi. A volumeWi is grown as explained in the next
section, and all the points of the volumeWi is removed from
the setS

mi = arg
p

min
S
rV (p) ; S = V �

i
[
j=1

Wj : (1)

The next minimum in the remaining set is chosen, and se-
lection process repeated until no more point remains.

3.2. Volume growing

The volumesWi, i = 1; ::;M are enlarged iteratively from
the markersmi by using color/texture similarity of the fea-

Fig. 2. Video-Cube indexing.

ture vectors!(mi)’s. Two distance criteriadg ,dl are de-
signed. The first criteriondg measures the distance between
the feature vector of the current volume and the candidate
point. The second criteriondl determines the distance be-
tween the feature vectors of the current volume and another
point that is already included in the current volume and also
adjoint to the candidate. Two thresholds�g, �l are set with
respect to the variance and dynamic range of the color fea-
tures as

�g =
�Y + �V + �U

�Y + �V + �U + 1
(2)

where� is the dynamic range,� is the mean, and� is the
standard deviation

�k = max!k �min!k k : Y; U; V (3)
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1
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X
p

(!k(p)� �k)
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The local threshold�l is the average of the discontinuity
between the neighboring points’ features scaled with the
points relative edgeness,

�l(x; y; t) =
~�V + ~�U + ~�V
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j!k(p)� !k(q)j

~�k(p) = max!k(p)�min!k(p)

whereqi, i = 1; ::;K are neighboring points ofp. Let x�

be an unmarked candidate point that is adjoint to the cur-
rent volume. Letx+ be a point adjoint tox� but already
included in the current volumeWi. Then, the first global
distancedg is calculated from

dg(!(mi); !(x
�)) =

X
k

j!k(mi)� !k(x
�)j (5)



Fig. 3. Clustering loop.

Similarly, the second local distancedn is

dl(!(x
+); !(x�)) =

X
k

j!k(x
+)� !k(x

�)j: (6)

If the distancesdg anddl are smaller then�g and �l, the
point x� is included in the volumeWi. The neighboring
point x� is set as an active surface point forWi, and the
feature vector for the marker is updated accordingly. In the
next iteration, the neighboring pixels of the active surface
points are examined. Volume growing is repeated until no
point remains in the video-cube.

Some of the volumes are negligible in size, however,
they effect the computational load if the clustering stage.
Small volumes are blended into the bordering most similar
volumes that gives the best combination of the greatest mu-
tual surface, the smallest color distance, the smallest mutual
volume, and the highest compactness ratio as defined in the
next section.

3.3. Descriptors

For each volumeWi, a trajectoryTi(t) = [Xi(t); Yi(t)]
T

is extracted by computing the frame-wise averages of vol-
ume’s points coordinates

Ti(t) =

�
Xi(t)
Yi(t)

�
=

�
1

Nt

P
xt

1

Nt

P
yt

�
(xt; yt; t) 2 Wi

Trajectories are the center of masses of regions in an im-
age frame, hence they approximate the translational motion
of the region. The Cartesian distance�dij(t) between the
trajectoriesTi(t) andTj(t) at timet is calculated as

�dij(t) =
q

(Xi(t)�Xj(t))2 + (Yi(t)� Yj(t))2 (7)

Fig. 4. Multi-resolution object tree

Some of the descriptors that interpret the mutual relations
of the grown volumesWi andWj are defined as

color : �k =
1

Ni

X
!k(p) k : Y; U; V

volume : v = [p

surface : s =
X

pi \ pj ; i 6= j
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X
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color dist: : �� =
X
k

j�k(i)� �k(j)j

direction dist: : �� =
X
t

j��i(t)���j(t)j

compact: ratio : rc = c(Wi [Wj)=(c(i) + c(j))

boundary ratio : rb = b(Wi \Wj)=b(i)

wherepi 2 Wi, pj 2 Wj , and��j(t) = 6 (Ti(t)�T (t�)).
Each descriptor is normalized to[0; 1]. These descriptors
identify volumes motion (�d; �d;��), shape (v; s; c; rc; rb),
and color (�k;��) characteristics. Motion characteristics
such as vertical and horizontal motion, route length, mean
and variance of distance, direction difference, and average
change in the distance are derived from the trajectories.

3.4. Clustering

In a fine-to-coarse clustering hierarchy, the most similar vol-
ume pairs are merged to decrease the number of the volumes



at each iteration. The volumes such that their motion tra-
jectories are consistent and their combination builds a rela-
tively compact shape are clustered. Color aspects are omit-
ted; partly because it was already included in volume grow-
ing, and also portions of a semantically meaningful object
do not have to possess the same color aspects, i.e., a human
face made up from different color regions, mouth, skin, hair,
etc. Volumes are sorted with respect to their sizes, compact-
ness and existence values. Starting from the first volume in
the sorted list (likely the least compact, smallest, and least
visible volume), each volume is compared sequentially to
its neighbors. If their mutual descriptors satisfy a set of
thresholds�(�d), �(�d), �(��), �(rc), �(rb), a similarity
scoreSij for that pairWi,Wj is computed. Initial values of
�’s are assigned as the mean of the corresponding descrip-
tor before the clustering stage. The constraint set is used
to prevent from degenerate cases that still give high similar-
ity scores. The most suitable descriptors used to form the
similarity score are the variance of trajectory distance for
motion, and the compactness ratio and mutual boundary ra-
tio for shape relevance. The similarity score is a function
of

Sij = f(��1d ; rc; rb) (8)

After similarity scores are computed for the possible vol-
ume pairs, the volume pair that gives the maximum simi-
larity score are merged together. Then, the descriptors are
updated and normalized. If no volumes are merged in the it-
eration, the thresholds are relaxed using the medians of the
previousnth object level descriptors

�n+1(g) = median(gn) g : �d; �d; ��; rc; rb: (9)

Clustering runs until the gradient of the best similarity score
become large compared to the initial gradients. An object-
wise multi-resolution representation is generated Fig. 4.

4. TEST RESULTS AND CONCLUSION

Fig. 5 presents the sample results. The first row shows
the original frames. The second row images are the vol-
ume growing results. The following rows are the levels
from the clustering algorithm. In the figures, the volumes
are color coded for illustration purposes. The results con-
firmed that the object extraction is robust even when the mo-
tion is large. The backgrounds and object boundaries were
detected accurately. Because no separate motion computa-
tion is involved in segmentation, our algorithm is fast unlike
the dense optical flow computing methods. An object-wise
multi-resolution representation is obtained; therefore the ex-
traction is not repeated when the number of segmented ob-
jects is changed as in the estimation-based or tracking-based
methods.

Fig. 5. Sample test results
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